Modernize and optimize
HAProxy configuration

Sébastien Gross / HAProxy Technologies

Agenda

©NOORAE DN =

Optimization example

How to measure optimization
Timeouts

Practical: ACL lookup
Practical: Denying a source IP
Practical: Backend selection
Stick tables

Other optimization

Disclaimer

Do not blindly copy / paste
examples.

Always read the RTF(E|W)?M.

Optimization example

Example

How can we optimize this directive?

http-request deny unless { req.hdr (host) -m regm -i

"A(?2:\d| [01]?\d{2}12(?:[0-4]1\d|5[0-5]))\. (?P<byte>(?<=10\.) (
\d|[01]1?\d{2}|2(?:[0-4]\d|5[0-5])))\.\k<byte>. (?:[1-9]][01]">
\d{2}|2(?:[0-4]\d|5[0-4])) (?::(?:\d{1,4}|[0-5]1\d{1,4}|6(?:[0
-4]1\d{3}15(?:[0-4]\d{2}]| (?:5(?:[0-2]\d|3[0-5]))))))?$" }

Document your configuration!

BN~

Use comments to document the configuration logic.

Explain everything you need to know when the production is down.
Do not describe what specific directive does unless complex ones.
Use Peter Norvic’s Rule of English Translation (Tutorial on Good Lisp
Programming, p. 53-54,
https://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf).

Write your configuration logic in English.
Write your configuration.

Translate your configuration in English.
Compare 1 and 3.

https://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf

Example

Deny any request wich host header does not match following pattern
10.A.A.1-254. An optional port (from 1 to 65535) can be specified

after a semicolon.

http-request deny unless { req.hdr (host) -m regm -i

"A(?:\d| [01]?\d{2}]12(?:[0-4]\d|5[0-5]1))\. (?P<byte>(?<=10\.) (\d| [01]?\d{2}|2(?:[0-4]\
d|5[0-51)))\.\k<byte>. (?:[1-9]|[01]?\d{2}|2(?:[0-4]\d|5[0-4])) (?::(?:\d{1,4}|[0-5]\d
{1,4}16(?:[0-4]\d{3}15(?:[0-4]\d{2}] (?:5(?:[0-2]\d|3[0-5]))))))?$"' }

Example (better, even if the goal of this rule isn’t)

Deny any request which host header does not match following pattern:
10.A.A.1-254. An optional port (from 1 to 65535) can be specified

after a semicolon.

Using this pattern we ensure that all requests are performed with hostname
set to our production PODs IP in the 10.A.A.0/24 networks. Check the IPAM
for further information about IP address assignment.

H H H H HF H

http-request deny unless { req.hdr (host) -m regm -i

"A(?:\d| [01]?\d{2}]2(?:[0-4]\d|5[0-5]1))\. (?P<byte>(?<=10\.) (\d|[01]?\d{2}|2(?:[0-4]\
d|5[0-51)))\.\k<byte>. (?:[1-9]|[01]?\d{2}|2(?:[0-4]\d|5[0-4])) (?::(?:\d{1,4}|[0-5]\d
{1,4}16(?:[0-4]\d{3}15(?:[0-4]\d{2} | (?:5(?:[0-2]\d|3[0-5]))))))?$"' }

Who spotted the bug?
Port O is allowed! Spoiler: this one is difficult to (cannot be) optimized!

Optimization is also useful to ...

e Help your colleagues or future you to quickly understand the configuration
logic.

Help the support to provide you the best possible answer.

Increase your service uptime.

Reduce the CPU time required to process a request (less energy required).
Reduce the request latency (increase the requests per second ratio).

How to measure a request

Measure a request

Take a reference to compare your results to.

Test the worst case scenario.

Do not test just one request.

Use tools like h1load (https://github.com/wtarreau/h1load) httpress

(https://github.com/yarosla/httpress) or h2load (https://nghttp2.org). Do not

mix tools.

e Addcpu ns_avg in the logs (value is computed at the very end of the
request).

e Disable logs when running heavy loaded benchmark tools.

e Avoid virtual machines.

https://github.com/wtarreau/h1load
https://github.com/yarosla/httpress
https://nghttp2.org

Timeouts

What are timeouts?

e Atimeout is the solution, not the problem.

e Protects the proxy against resources exhaustion.

e Act at several levels (client, connect, server, tunnel, http-request,
...)

e No one-size-fits-all settings.

e Reported in the standard logs (termination state): eD, cR, SD, sH, ...

e Configured in default, frontend, backend and listen sections.

How to setup timeouts?

: : : o
e Best practice: use different values for all What is the main problem with those settings”

timeouts.

e Think of a funnel from the client (highest default_ _
timeout) to the server (lowest timeout). option e SRR AER
e For static content, use low values to retries 3
connect to local servers (5 to 50ms max), timeout connect 10s
higher for distant ones. timeout client 300s
e Try with acceptable values and increase timeout server 300s
them.
e Check logs for termination states (eD, cR,
SD, sH, ...) , , 10s with 3 retries = up to 40s to inform the client!
e Use option redispatch if session
cookie is used in http. If more than 1 server in the backend, the redispatch

e Use tep-utin addition to long timeouts. hg|ps to try another one. But still 10s to wait.

Timeouts example

default

option redispatch # client can’t flush session cookie
timeout client 51s

timeout server 49s

timeout connect 25ms # Should be enough on a LAN

timeout http-request 5s # Slowloris protection!

frontend web
tcp-ut overrides client timeout if the client disappears.
bind *:80 tcp-ut 10s

et

Disclaimers

Benchmarks in this workshop

e Results will be different (CPU, distribution, HAProxy version, background

tasks, ...)
e Benchmarks a bound only on 1 CPU core.
e Absolute value means nothing, only consider variations.
e It's better to use a real lab with dedicated servers.

Results are given for:

e 1 HAProxy (2.6.6) server and 1 injector. Dedicated bare metal.
e Using 1 core of Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz.

Example files

e All example files are provided with full comments.
e We try to figure out the solution together.
e We are here to learn not to cheat. Please do not read the solution in advance.

et

ACL lookup

Block obvious passwords

Context:

The hosted service is used to reset a user password.
Service is located under /reset-password.
The password is provided as a query parameter (password=Secret).

o
o
o
e For example sake, we only focus on password, not the user name.

Goal:

e Block the request if password is a common English word.

Example: /reset-password?password=Secret

Original configuration

this frontend denies all requests having a password parameter
matching a banned list of passwords from the file
forbidden-passwords.acl
frontend original
bind :8001
http-request deny if { query -m reg -f forbidden-passwords.acl }

ACL forbidden-passwords.acl is a list of regular expressions matching
password=something in the query:

(| &) password=(alabama|admission|articles) (&|$)

[...]

Reference measurement

the direct frontend is used to measure the req/s in the most

favorable case. This would be our reference.

frontend direct
bind :8000
Each http-request has a cost. This simulates a dummy rule which
does not filter anything but checks request is a GET.
http-request deny if !'{ method -m str GET }

Benchmark

Run HAProxy:

haproxy -f haproxy.cfg

Run reference benchmark (port 8000):

taskset -c¢ 1 ./hlload -t 1 -c 64 -d 20 -S
'http://198.18.0.102:8000/reset-password?foo=baré&password=NotInList&bar=foo'

Run lookup benchmark (port 8001):

taskset -c¢ 1 ./hlload -t 1 -c 64 -d 20 -S
'http://198.18.0.102:8001/reset-password?foo=baré&password=NotInList&bar=foo'

Results

Direct: 166k req/s
Filtered: 162k req/s

Be careful of tune.pattern.cache-size.

NO PATTERN CACHE=1 haproxy -f haproxy.cfg

Direct: 165k req/s
Filtered: 108k req/s

Test with different URLs

Now let’s try a different request: /?foo=bars&password=NotInLists&bar=foo.

Results are the same (about 108k req/s). Why?

The path should be filtered out: { path -m str /reset-password }

Filter on path (1)

frontend optim-01

bind :8002

http-request deny if { query -m reg -f
forbidden-passwords.acl } { path -m str /reset-password }

Results are not better:
e /reset-password?foo=bar&password=NotInList&bar=foo: 108k req/s
e /?foo=bar&password=NotInList&bar=foo: 108k req/s

WHY?

Order matters!

Filter on path (2)

frontend optim-02
bind :8003

http-request deny if { path -m str /reset-password } {
query -m reg -f forbidden-passwords.acl }

Results are better:
e /reset-password?foo=bar&password=NotInList&bar=foo: 104k req/s
e /?foo=bar&password=NotInList&bar=foo: 165k req/s

Can we do better?

Yes we can!

Extract password parameter with url param

frontend optim-03
bind :8004

http-request deny if { path -m str /reset-password } {
url param(password) -m reg -f forbidden-passwords-o003.acl }

(alabama|admission|articles)

[...]

Results are better:
e /reset-password?foo=bar&password=NotInList&bar=foo: 119k req/s

Can we do better?

Extract password parameter: words list

frontend optim-04
bind :8005

http-request deny if { path -m str /reset-password } {
url param(password) -m reg -f forbidden-passwords-o04.acl }

alabama
admission
articles

[...]

Results are worse:
e /reset-password?foo=bar&password=NotInListé&bar=foo: 33k req/s

WHY?
Because the list is not 26 items long but 251.

Use fixed string

frontend optim-05
bind :8006

http-request deny if { path -m str /reset-password } {
url param(password) -m str -f forbidden-passwords-o04.acl }

Results are better:
e /reset-password?foo=baré&password=NotInList&bar=foo: 158k req/s

Bonus 1: case insensitive

frontend bonus-01

bind :8007
http-request deny if { path -m str /reset-password } {

url param(password) -m str -i -f forbidden-passwords-o04.acl

}

Results are worse:
e /reset-password?foo=baré&password=NotInList&bar=foo: 123k req/s

Why?

Case insensitive lookup is linear.

Bonus 2: case insensitive (2)

frontend bonus-02
bind :8008

http-request deny if { path -m str /reset-password } {
url param(password) , lower -m str -f forbidden-passwords-o04.acl }

Results are excellent:
e /reset-password?foo=bar&password=NotInListé&bar=foo: 153k req/s

There is almost no impact!

e Tree lookup is very efficient
e Only a few comparison (depend on longest pattern)

Bonus 3: 10k-entry list

frontend bonus-03
bind :8009
http-request deny if { path -m str /reset-password } {

url param(password) , lower -m str -f
google-10000-english-no-swears. txt }

Results are excellent:
e /reset-password?foo=bar&password=NotInListé&bar=foo: 151k req/s

There is almost no impact! Size does not matter!
As a comparison:

e String insensitive lookup: 13k req/s
e Regular expression lookup: 1.3k req/s

Conclusions

e Do not just run 1 request.

e Be careful about the pattern cache.

e Careful if regular expressions worked perfectly on staging (no difference with
string lookup if <1.3k req/s).

e Avoid regular expressions if possible.

e Prefer case sensitive (normalized) lookups.

et

Denying source |IP

First approach http-request deny

Goal: deny access unless client is from allowed network (10.0.0.0/24)

frontend http-request
bind :8000

Block all source IP but authorized networks.
acl allowed networks src -m ip 10.0.0.0/24

http-request deny if !'allowed networks

Force a connection close
http-after-response add-header connection close if 'allowed networks

How can we optimize this frontend?

Rules processing order

® tcp-request connection: Immediately after acceptance of a new
incoming connection. (Layer 4)

e tcp-request session: Once a session is validated, after all handshakes
have been completed. (Layer 5)

e tcp-request content: Can access to the request payload. Requires
tcp-inspect delay. (Layer 7)

e http-request: After parsing the request. (Layer 7)

e tcp-response content: Can access to the response payload. Requires
tcp-response-inspect delay. (Layer7)

e http-response: After parsing the response. (Layer 7)

e http-after-response: Before sending the response to the client. (Layer
7)

Benchmarking

Difficult to measure since:

A new TCP connection is made for each request.

Need to check connections per second instead of requests.
Inconsistent results when running on one core.

Need to saturate client.

Lock congestion happens on the client in SSL context.

Command lines to use (to test http-request):

taskset -c 0-3 ./hlload -t 4 -c 128 -d 60 -1 -S http://198.18.0.102:8000/
taskset -c 0-3 ./hlload -t 4 -c 128 -d 60 -1 -S https://198.18.0.102:8010/
taskset -c 0-3 ./hlload -t 4 -c 128 -d 60 -1 -S https://198.18.0.102:8020/

Results

Rule

http-request
tcp-request content
tcp-request session

tcp-request connection

RSA: 2048-bit RSA bey.
EC: ECDSA key.

HTTP
conn/s CPU
74k 98%
123k 99%
183k 97%
185k 97%

HTTPS (RSA key)

conn/s
<255
<255
<255

81k (*)

(*) client staturares: values can reach up to 90k regs on a Il 8 cores:
taskset -c 0-7 ./hlload -t 8 -c 128 -d 20 -S 'https://198.18.0.102:8023/"

CPU
100%
100%
100%

87%

conn/s
2.4k
2.5k
2.6k

81k (*)

SSL comes with overhead on client side a well (context creation, preallocation, etc...).
Do not compare clear vs SSL connections.

HTTPS (ECDSA key)

CPU
100%
100%
100%

86%

Conclusions

e Each layer has a cost.

e Close connections as soon as possible.

e In SSL context tcp-request connection deny saves key computations
and CPU time.

e If possible prefer ECDSA key instead of RSA (key computation is on client
side).

e Avoid silent-drop rule directive if firewalls are used.

et

Backend selection

Hostname based routing

How can we optimize this proxy?

Route traffic to specific backend depending on hostname.

just a dummy backend given as an example.
frontend original
bind :8000

default backend default

acl host vhost00 req.hdr (host) vhost00.example.com
use_backend vhost if host_vhost00

[...]

acl host_vhost99 req.hdr (host) vhost99.example.com
use backend vhost if host vhost99

"vhost"

is

Check how a request is handled

e Backend selection depends on hostname.

e If hostname is unknown, use default backend.

e Need to run benchmark on several backends:
o vhost00.example.com (most favorable case)
o vhost42.example.com (random case)
o vhostl00.example.com (least favorable case)

taskset -c¢ 1 ./hlload -t 1 -c 64 -d 20 -1 -S -H "host: $vhost" 'http://198.18.0.102:8000/"

Results

Backend selection

160'(T T T T

Requests per second

o | | | |

12k
11k
10k
8k
7k
6k
5k
4k
2k
1k

0 200 400 600 800 1000

Number of rules
req/s

latency

Latency increases linary with number of backends.
Requests per second follow an exponential decay with number of backends.
Each use_backend rule’s filter has a cost.

Latency (microseconds)

Naive approach

Remove named ACL;

frontend anonymous-acl
bind :8001

use backend vhost if { req.hdr (host) -m str vhost00.example.com }

[...]

use backend vhost if { req.hdr (host) -m str vhost99.example.com }

e Does not change anything (43k reqg/s).
e ACL are evaluated on demand.
e Need a more efficient way to route requests.

Why not a session variable?

Transaction variable

frontend anonymous-acl-var
bind :8002
http-request set-var(txn.req host) req.hdr (host)
use backend vhost if { req.hdr (host) -m str vhost00.example.com }

[...]

use backend vhost if { req.hdr (host) -m str vhost99.example.com }

e \Way better: 68k req/s.
e Still hard to maintain.
e \We can do better.

Why not a map file?

Using a map

Strip potential port number and convert hostname to lowercase. This

value is used to select a backend from the backends.map file. Use default
backend host is not found in the map.

map file format:

#
HOSTNAME BACKEND TO USE
frontend backend-map-default

bind :8003
use_backend %[req.hdr (host) ,word(1l,:),lower, map str (backends.map,default)]

e One single line.

e Easier to maintain.

e (Almost) constant lookup time and latency (150k req/s and 427us, 148k req/s 427us with 1000
entries).

e Can handle mixed case and port number.

e Can specify a default entry.

ACL vs map files

Backends.map is:

HOSTNAME BACKEND NAME

host value is not sanitized for the sake of this example.
acl is valid host req.hdr (host) ,map str (backends.map) -m found
http-request deny if !is valid host

-M load the file pointed by -f like a map file:

pattern is 1lst column instead of using the full line as pattern.
acl is valid host req.hdr (host) -m str -M -f backends.map
http-request deny if !is valid host

e ACL can be loaded from a map file if map return value is not used.
e Results are very close.
e Same file can be used for several purposes.

Map files conclusions

e [Easy to maintain.

e \ery low lookup time if data is normalized.

e (Can be used with any fetch sample like srec, req.hdr (hostname or client
ID), req. cook, ...

e (Can be live updated from the runtime API (set map <map>
[<key>|#<ref>] <value>), rules (http-request set-map) or with
Ib-update module (enterprise edition).

e Can be used to define variables such as thresholds:

tcp-request connection set-var(txn.max conn allowed)
str (max _conn_allowed) ,map (settings.map,10)

Stick tables

What are stick-tables?

In-memory efficient key-values tables to store various information.

Only existing keys consume memory.

Initial goal: handle server affinity when cookies are not usable (TCP mode).
Now: can store lots of statistics (connection and request rates, bytes in or out,
custom values such as gpc or gpt).

Can be replicated to another HAProxy server.

e Can be aggregated using the Global Profiling Engine (AKA
stick-table-aggregator) in Enterprise Edition.

Stick table definition

Dummy backend used to track statistics per client IP. The table is
configured to compute the connection rate within 1lm time frame and
compute errors within 10m.

backend per-ip

stick-table type ip size 10k expire 24h store conn_rate(lm)
store http req rate(lm) store http err rate(10m) store
http fail rate (10m)

Dummy backend used to track if a file has been downloaded in the

last hour. Instead of storing the file path, we use the base32 CRC
of the path which is more efficient.

backend per-url

stick-table type binary len 8 size 10k expire 24h store
http req rate(1lh)

Stick table definition

Only one table per backend.

Table named after its backend.

Need to define dummy backends to create more stick-table.
Are referred by their names in configuration:

table http req rate(per-ip).

e Can be queried from runtime API:

List all tables
socat unix:haproxy.sock - <<< "show table"

Show a table content
socat unix:haproxy.sock - <<< '"show table per-ip"

Stick table definition

All tables are shown in the statistic page.

my-app

Frontend of 10| -] 10| 1| s24274] 10 19782990| 66636350 347060, O 0O OPEN
10 -| 10| 10| os 570 830 0 of o o 0| no check m|y| - -
10| 52428] 10| 10| 9s| 19782990| 66636 350 0 0 of of o o| 13sup M [1]o0 [o] 0s

~|[Apply |

nd 0 0 0 0 0 0 1 0 0 ?| 0 0 0 0 0 0 0 0| 13sUP 0/0 0 0 0 ssl h2 h1

Backend | 0| 0 o] o of of 1] of of 2[of of o o of of o o 13sup 00 [o[o 0 ssi| h2| m

Stick table in peers section

peers my-app
requires at least 1 server
server "$HAPROXY_LOCALPEER" # this host name

table NAME DEFINITION
instead of
stick-table DEFINITION

table per-ip type ip size 10k expire 24h store conn rate(lm)
store http req rate(lm) store http err rate(lOm) store
http fail rate(10m)

table per-url type binary len 8 size 10k expire 24h store
http req rate(lh)

Stick table in peers section

Can be replicated to remote peer or aggregator (Enterprise only).
Latest update wins!

Server name must match hostname or peer name (-L option).

No need for extra dummy backends (do not pollute statistics page).
Are referenced by PEERS_NAME/TABLE NAME scheme:

table http req rate (my-app/per-ip).

List all tables
socat unix:haproxy.sock - <<< "show table"

Show a table content
socat unix:haproxy.sock - <<< "show table my-app/per-ip"

Dos and don’ts

Track per client IP statistics.
http-request track-scO0 src table per-ip

e Track layer 4 data (src, ports) at tcp-request connect
e Track TCP data from payload at tcp-request content

Source IP address is only made at connection time.
Not for all requests.

tcp-request connect track-scO src table per-ip
Capture ssl version for TCP passthrough proxy
tcp-request inspect delay 1s

tcp-request session track-scl req.ssl ver

Conclusions

Use peers section if multiple tables are required.

Track values as soon as possible to prevent multiple lookups per connection.
Tables are useful for rate limiting and abuse detection.

Table content is lost on reload except when using a peers section.

et

Miscellaneous optimizations

ACL definition

acl allowed host src 10.0.0.10 10.0.0.20 10.0.0.30
acl allowed host src -m ip -f office-fr.acl
acl allowed host src -m ip -f office-hr.acl
acl allowed host src -m ip -f office-us.acl
acl allowed host src -m ip -f office-ca.acl

Better solution
acl allowed host src -f office-fr.acl -f office-hr.acl -f
office-us.acl -f office-ca.acl 10.0.0.10 10.0.0.20 10.0.0.30

e Items are OR'd
e Inefficient: creates 1 lookup tree per line. Lookup forest!
e 132k reqg/s vs 134k req/s. Gap increases with statements.

ACL

e Multiple definitions can be used if criterions are different:

acl has _client id url param(client-id) -m found
acl has client id req.hdr(x-client-id) -m found

e Order matters.
e On-demand evaluation.
e Evaluation is stopped as soon as possible:

has client id is not evaluated if allowed host is true
http-request deny if 'allowed host 'has client id

x-forwarded-for

(1) Adds xff. Potential security issue
http-request add-header x-forwarded-for %[src]
(2) Removes and adds xff

http-request del-header x-forwarded-for
http-request add-header x-forwarded-for %[src]
(3) Replaces xff

http-request set-header x-forwarded-for %[src]

(4) Adds xff. Potential security issue
option forwardfor
(5) Replaces xff
option forwardfor
http-request del-header x-forwarded-for

X-forwarded-for (results)

1 add-header 135k req/s
2 del-header + add-header 132k reqg/s
3 set-header 133k req/s
4 option forwardfor 152k req/s
5 option forwardfor + del-header | 150k req/s

e Use option forwardfor.
e Additional del-header rule can be used if security is a concern.
e Use tcpdump to validate results sent to the server.

x-forwarded-proto

http-request set-header X-Forwarded-Proto https if { ssl fc }
http-request set-header X-Forwarded-Proto http if !{ ssl fc }

use iif converter which is cheaper than 2 http-request rules
http-request set-header X-Forwarded-Proto %[ssl_fc,iif (https, http)]

e \With 2 rules: 144k req/s
e Using iif: 146k req/s

HTTP and HTTPS

HTTP and HTTPS (2)

e Frontends can use several binds

e Even with different methods (IPv4, IPv6, abns, unix socket, ...)

e [Easier to maintain

frontend web
bind *:80
bind *:443 ssl crt /etc/haproxy/certs
full ruleset
use_backend my-backend
Let the client remember to use https

http-after-response set-header Strict-Transport-Security
"max-age=31536000; includeSubDomains; preload;" if { ssl fc }

HTTP and HTTPS (3)

(1) http -> https
redirect scheme https code 301 if !'{ ssl fc }

(2) http-request redirect is better than redirect
http-request redirect scheme https code 301 if !{ ssl fc }
(3) If not using standard ports. Does it really make sense?

http-request redirect code 301 location
https://%[req.hdr (host) ,word(1l,:)]:8443%[pathq] if '{ ssl fc }

e 1:redirect scheme is done after http-request rules. (118k req/s).
e 2: Careful if not using standard ports! (156k req/s).
e 3: Does this example really makes sense? (145k req/s).

Rule of thumb http-request redirect from http to https should be the first rule.

last rule fileand last rule line

e Useful to determine latest http-request or tcp-request rule in request
processing.
e Add these values to a log line:

Add last rule information to standard log line.
HTTP LOG should be declared in the global section using a
setenv directive.

log-format "S${HTTP LOG} lr:%[last rule file]:%[last rule line]"

Nov 2 17:08:27 lab-inj02 haproxy[24499]: 198.18.0.101:47082
[02/Nov/2022:17:08:27.161] xforwardedfor-option-del demo-server/<NOSRV>
o/-1/-1/-1/0 200 74 - - LR-- 1/1/0/0/0 0/0 "GET / HTTP/1.1" lr:haproxy.cfg:97

Conditional configuration

peers my-app
The local peer has to be defined with no option
server "$HAPROXY LOCALPEER"

Add some replicas if required. A peer name MUST match the server
hostname or the name given with the -L option to HAProxy.
.if defined(IS_CLUSTER)
bind *:10000
If current peer is 1bl, we need to add 1b2
.if streq("$HAPROXY LOCALPEER","1lbl")
server 1b2 192.768.255.2:10000
.endif
Same in the other way round.
.if streq("$HAPROXY LOCALPEER", "1lb2")
server 1lbl 192.768.255.1:10000
.endif
.endif
Tables definition goes here

String escaping

Use weak (") or strong quoting (') instead of backslash (\) space escaping.
Easier to read and modify.

Weak quotes: allow variable expansion.

Strong quotes: nothing is interpreted. Use it with regular expressions.

http-request set-header x-comment this\ is difficult\ to\ read
http-request set-header x-comment "this is easier to read"
Protect regexp strings and arguments (Check official documentation)

http-request set-path '%[path,regsub("*/(here) (/|$)", "my/\1",g)]"

Who spotted the bug in first rule?
Missing \ between is and difficult.

Thank for your attention.

Any questions?

