
Modernize and optimize
HAProxy configuration
Sébastien Gross / HAProxy Technologies

Agenda

1. Optimization example
2. How to measure optimization
3. Timeouts
4. Practical: ACL lookup
5. Practical: Denying a source IP
6. Practical: Backend selection
7. Stick tables
8. Other optimization

Disclaimer

Do not blindly copy / paste
examples.

Always read the RTF(E|W)?M.

Optimization example

Example

 http-request deny unless { req.hdr(host) -m regm -i
'^(?:\d|[01]?\d{2}|2(?:[0-4]\d|5[0-5]))\.(?P<byte>(?<=10\.)(
\d|[01]?\d{2}|2(?:[0-4]\d|5[0-5])))\.\k<byte>.(?:[1-9]|[01]?
\d{2}|2(?:[0-4]\d|5[0-4]))(?::(?:\d{1,4}|[0-5]\d{1,4}|6(?:[0
-4]\d{3}|5(?:[0-4]\d{2}|(?:5(?:[0-2]\d|3[0-5]))))))?$' }

How can we optimize this directive?

Document your configuration!

● Use comments to document the configuration logic.
● Explain everything you need to know when the production is down.
● Do not describe what specific directive does unless complex ones.
● Use Peter Norvic’s Rule of English Translation (Tutorial on Good Lisp

Programming, p. 53-54,
https://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf).

1. Write your configuration logic in English.
2. Write your configuration.
3. Translate your configuration in English.
4. Compare 1 and 3.

https://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf

Example
Deny any request wich host header does not match following pattern
10.A.A.1-254. An optional port (from 1 to 65535) can be specified
after a semicolon.

http-request deny unless { req.hdr(host) -m regm -i
'^(?:\d|[01]?\d{2}|2(?:[0-4]\d|5[0-5]))\.(?P<byte>(?<=10\.)(\d|[01]?\d{2}|2(?:[0-4]\
d|5[0-5])))\.\k<byte>.(?:[1-9]|[01]?\d{2}|2(?:[0-4]\d|5[0-4]))(?::(?:\d{1,4}|[0-5]\d
{1,4}|6(?:[0-4]\d{3}|5(?:[0-4]\d{2}|(?:5(?:[0-2]\d|3[0-5]))))))?$' }

Example (better, even if the goal of this rule isn’t)
Deny any request which host header does not match following pattern:
10.A.A.1-254. An optional port (from 1 to 65535) can be specified
after a semicolon.
#
Using this pattern we ensure that all requests are performed with hostname
set to our production PODs IP in the 10.A.A.0/24 networks. Check the IPAM
for further information about IP address assignment.

http-request deny unless { req.hdr(host) -m regm -i
'^(?:\d|[01]?\d{2}|2(?:[0-4]\d|5[0-5]))\.(?P<byte>(?<=10\.)(\d|[01]?\d{2}|2(?:[0-4]\
d|5[0-5])))\.\k<byte>.(?:[1-9]|[01]?\d{2}|2(?:[0-4]\d|5[0-4]))(?::(?:\d{1,4}|[0-5]\d
{1,4}|6(?:[0-4]\d{3}|5(?:[0-4]\d{2}|(?:5(?:[0-2]\d|3[0-5]))))))?$' }

Who spotted the bug?
Port 0 is allowed! Spoiler: this one is difficult to (cannot be) optimized!

Optimization is also useful to …

● Help your colleagues or future you to quickly understand the configuration
logic.

● Help the support to provide you the best possible answer.
● Increase your service uptime.
● Reduce the CPU time required to process a request (less energy required).
● Reduce the request latency (increase the requests per second ratio).

How to measure a request

Measure a request

● Take a reference to compare your results to.
● Test the worst case scenario.
● Do not test just one request.
● Use tools like h1load (https://github.com/wtarreau/h1load) httpress

(https://github.com/yarosla/httpress) or h2load (https://nghttp2.org). Do not
mix tools.

● Add cpu_ns_avg in the logs (value is computed at the very end of the
request).

● Disable logs when running heavy loaded benchmark tools.
● Avoid virtual machines.

https://github.com/wtarreau/h1load
https://github.com/yarosla/httpress
https://nghttp2.org

Timeouts

What are timeouts?

● A timeout is the solution, not the problem.
● Protects the proxy against resources exhaustion.
● Act at several levels (client, connect, server, tunnel, http-request,

…)
● No one-size-fits-all settings.
● Reported in the standard logs (termination state): cD, cR, SD, sH, …
● Configured in default, frontend, backend and listen sections.

How to setup timeouts?

● Best practice: use different values for all
timeouts.

● Think of a funnel from the client (highest
timeout) to the server (lowest timeout).

● For static content, use low values to
connect to local servers (5 to 50ms max),
higher for distant ones.

● Try with acceptable values and increase
them.

● Check logs for termination states (cD, cR,
SD, sH, …)

● Use option redispatch if session
cookie is used in http.

● Use tcp-ut in addition to long timeouts.

default
 option redispatch
 retries 3
 timeout connect 10s
 timeout client 300s
 timeout server 300s

10s with 3 retries = up to 40s to inform the client!

If more than 1 server in the backend, the redispatch
helps to try another one. But still 10s to wait.

What is the main problem with those settings?

Timeouts example

default
 option redispatch # client can’t flush session cookie
 timeout client 51s
 timeout server 49s
 timeout connect 25ms # Should be enough on a LAN
 timeout http-request 5s # Slowloris protection!

frontend web
 # tcp-ut overrides client timeout if the client disappears.
 bind *:80 tcp-ut 10s

Disclaimers

Benchmarks in this workshop

● Results will be different (CPU, distribution, HAProxy version, background
tasks, …)

● Benchmarks a bound only on 1 CPU core.
● Absolute value means nothing, only consider variations.
● It’s better to use a real lab with dedicated servers.

Results are given for:

● 1 HAProxy (2.6.6) server and 1 injector. Dedicated bare metal.
● Using 1 core of Intel(R) Xeon(R) CPU E5-1630 v4 @ 3.70GHz.

Example files

● All example files are provided with full comments.
● We try to figure out the solution together.
● We are here to learn not to cheat. Please do not read the solution in advance.

ACL lookup

Block obvious passwords

Context:

● The hosted service is used to reset a user password.
● Service is located under /reset-password.
● The password is provided as a query parameter (password=Secret).
● For example sake, we only focus on password, not the user name.

Goal:

● Block the request if password is a common English word.

Example: /reset-password?password=Secret

Original configuration
this frontend denies all requests having a password parameter
matching a banned list of passwords from the file
forbidden-passwords.acl
frontend original
 bind :8001
 http-request deny if { query -m reg -f forbidden-passwords.acl }

(^|&)password=(alabama|admission|articles)(&|$)
[...]

ACL forbidden-passwords.acl is a list of regular expressions matching
password=something in the query:

Reference measurement
the direct frontend is used to measure the req/s in the most
favorable case. This would be our reference.
frontend direct
 bind :8000
 # Each http-request has a cost. This simulates a dummy rule which
 # does not filter anything but checks request is a GET.
 http-request deny if !{ method -m str GET }

Benchmark

taskset -c 1 ./h1load -t 1 -c 64 -d 20 -S
'http://198.18.0.102:8000/reset-password?foo=bar&password=NotInList&bar=foo'

haproxy -f haproxy.cfg

Run HAProxy:

Run reference benchmark (port 8000):

taskset -c 1 ./h1load -t 1 -c 64 -d 20 -S
'http://198.18.0.102:8001/reset-password?foo=bar&password=NotInList&bar=foo'

Run lookup benchmark (port 8001):

Results
Direct: 166k req/s

Filtered: 162k req/s

Be careful of tune.pattern.cache-size.

Direct: 165k req/s

Filtered: 108k req/s

NO_PATTERN_CACHE=1 haproxy -f haproxy.cfg

Test with different URLs

Now let’s try a different request: /?foo=bar&password=NotInList&bar=foo.

Results are the same (about 108k req/s). Why?

The path should be filtered out: { path -m str /reset-password }

Filter on path (1)

frontend optim-01
 bind :8002
 http-request deny if { query -m reg -f
forbidden-passwords.acl } { path -m str /reset-password }

Results are not better:
● /reset-password?foo=bar&password=NotInList&bar=foo: 108k req/s
● /?foo=bar&password=NotInList&bar=foo: 108k req/s

WHY?

Order matters!

Filter on path (2)

frontend optim-02
 bind :8003
 http-request deny if { path -m str /reset-password } {
query -m reg -f forbidden-passwords.acl }

Results are better:
● /reset-password?foo=bar&password=NotInList&bar=foo: 104k req/s
● /?foo=bar&password=NotInList&bar=foo: 165k req/s

Can we do better?

Yes we can!

Extract password parameter with url_param

frontend optim-03
 bind :8004
 http-request deny if { path -m str /reset-password } {
url_param(password) -m reg -f forbidden-passwords-o03.acl }

Results are better:
● /reset-password?foo=bar&password=NotInList&bar=foo: 119k req/s

Can we do better?

(alabama|admission|articles)
[...]

Extract password parameter: words list

frontend optim-04
 bind :8005
 http-request deny if { path -m str /reset-password } {
url_param(password) -m reg -f forbidden-passwords-o04.acl }

Results are worse:
● /reset-password?foo=bar&password=NotInList&bar=foo: 33k req/s

WHY?

alabama
admission
articles
[...]

Because the list is not 26 items long but 251.

Use fixed string

frontend optim-05
 bind :8006
 http-request deny if { path -m str /reset-password } {
url_param(password) -m str -f forbidden-passwords-o04.acl }

Results are better:
● /reset-password?foo=bar&password=NotInList&bar=foo: 158k req/s

Bonus 1: case insensitive

frontend bonus-01
 bind :8007
 http-request deny if { path -m str /reset-password } {
url_param(password) -m str -i -f forbidden-passwords-o04.acl
}

Results are worse:
● /reset-password?foo=bar&password=NotInList&bar=foo: 123k req/s

Why?

Case insensitive lookup is linear.

Bonus 2: case insensitive (2)

frontend bonus-02
 bind :8008
 http-request deny if { path -m str /reset-password } {
url_param(password),lower -m str -f forbidden-passwords-o04.acl }

Results are excellent:
● /reset-password?foo=bar&password=NotInList&bar=foo: 153k req/s

There is almost no impact!

● Tree lookup is very efficient
● Only a few comparison (depend on longest pattern)

Bonus 3: 10k-entry list

frontend bonus-03
 bind :8009
 http-request deny if { path -m str /reset-password } {
url_param(password),lower -m str -f
google-10000-english-no-swears.txt }

Results are excellent:
● /reset-password?foo=bar&password=NotInList&bar=foo: 151k req/s

There is almost no impact! Size does not matter!

As a comparison:
● String insensitive lookup: 13k req/s
● Regular expression lookup: 1.3k req/s

Conclusions

● Do not just run 1 request.
● Be careful about the pattern cache.
● Careful if regular expressions worked perfectly on staging (no difference with

string lookup if <1.3k req/s).
● Avoid regular expressions if possible.
● Prefer case sensitive (normalized) lookups.

Denying source IP

First approach http-request deny

Goal: deny access unless client is from allowed_network (10.0.0.0/24)

frontend http-request
 bind :8000

 # Block all source IP but authorized networks.
 acl allowed_networks src -m ip 10.0.0.0/24
 http-request deny if !allowed_networks

 # Force a connection close
 http-after-response add-header connection close if !allowed_networks

How can we optimize this frontend?

Rules processing order

● tcp-request connection: Immediately after acceptance of a new
incoming connection. (Layer 4)

● tcp-request session: Once a session is validated, after all handshakes
have been completed. (Layer 5)

● tcp-request content: Can access to the request payload. Requires
tcp-inspect delay. (Layer 7)

● http-request: After parsing the request. (Layer 7)
● tcp-response content: Can access to the response payload. Requires

tcp-response-inspect delay. (Layer 7)
● http-response: After parsing the response. (Layer 7)
● http-after-response: Before sending the response to the client. (Layer

7)

Benchmarking

Difficult to measure since:

● A new TCP connection is made for each request.
● Need to check connections per second instead of requests.
● Inconsistent results when running on one core.
● Need to saturate client.
● Lock congestion happens on the client in SSL context.

Command lines to use (to test http-request):

taskset -c 0-3 ./h1load -t 4 -c 128 -d 60 -l -S http://198.18.0.102:8000/
taskset -c 0-3 ./h1load -t 4 -c 128 -d 60 -l -S https://198.18.0.102:8010/
taskset -c 0-3 ./h1load -t 4 -c 128 -d 60 -l -S https://198.18.0.102:8020/

Results
HTTP HTTPS (RSA key) HTTPS (ECDSA key)

Rule conn/s CPU conn/s CPU conn/s CPU

http-request 74k 98% <255 100% 2.4k 100%

tcp-request content 123k 99% <255 100% 2.5k 100%

tcp-request session 183k 97% <255 100% 2.6k 100%

tcp-request connection 185k 97% 81k (*) 87% 81k (*) 86%

● RSA: 2048-bit RSA bey.
● EC: ECDSA key.
● SSL comes with overhead on client side a well (context creation, preallocation, etc…).
● Do not compare clear vs SSL connections.

(*) client staturares: values can reach up to 90k reqs on a ll 8 cores:
 taskset -c 0-7 ./h1load -t 8 -c 128 -d 20 -S 'https://198.18.0.102:8023/'

Conclusions

● Each layer has a cost.
● Close connections as soon as possible.
● In SSL context tcp-request connection deny saves key computations

and CPU time.
● If possible prefer ECDSA key instead of RSA (key computation is on client

side).
● Avoid silent-drop rule directive if firewalls are used.

Backend selection

Hostname based routing
How can we optimize this proxy?

Route traffic to specific backend depending on hostname. "vhost" is
just a dummy backend given as an example.
frontend original
 bind :8000

 default_backend default

 acl host_vhost00 req.hdr(host) vhost00.example.com
 use_backend vhost if host_vhost00
 [...]
 acl host_vhost99 req.hdr(host) vhost99.example.com
 use_backend vhost if host_vhost99

Check how a request is handled

● Backend selection depends on hostname.
● If hostname is unknown, use default backend.
● Need to run benchmark on several backends:

○ vhost00.example.com (most favorable case)
○ vhost42.example.com (random case)
○ vhost100.example.com (least favorable case)

taskset -c 1 ./h1load -t 1 -c 64 -d 20 -l -S -H "host: $vhost" 'http://198.18.0.102:8000/'

Results

● Latency increases linary with number of backends.
● Requests per second follow an exponential decay with number of backends.
● Each use_backend rule’s filter has a cost.

Naive approach

Remove named ACL:

frontend anonymous-acl
 bind :8001
 use_backend vhost if { req.hdr(host) -m str vhost00.example.com }
 [...]
 use_backend vhost if { req.hdr(host) -m str vhost99.example.com }

● Does not change anything (43k req/s).
● ACL are evaluated on demand.
● Need a more efficient way to route requests.

Why not a session variable?

Transaction variable

frontend anonymous-acl-var
 bind :8002
 http-request set-var(txn.req_host) req.hdr(host)
 use_backend vhost if { req.hdr(host) -m str vhost00.example.com }
 [...]
 use_backend vhost if { req.hdr(host) -m str vhost99.example.com }

● Way better: 68k req/s.
● Still hard to maintain.
● We can do better.

Why not a map file?

Using a map
Strip potential port number and convert hostname to lowercase. This
value is used to select a backend from the backends.map file. Use default
backend host is not found in the map.
map file format:
#
HOSTNAME BACKEND_TO_USE
frontend backend-map-default
 bind :8003
 use_backend %[req.hdr(host),word(1,:),lower,map_str(backends.map,default)]

● One single line.
● Easier to maintain.
● (Almost) constant lookup time and latency (150k req/s and 427µs, 148k req/s 427µs with 1000

entries).
● Can handle mixed case and port number.
● Can specify a default entry.

ACL vs map files

● ACL can be loaded from a map file if map return value is not used.
● Results are very close.
● Same file can be used for several purposes.

Backends.map is:
HOSTNAME BACKEND_NAME
host value is not sanitized for the sake of this example.
acl is_valid_host req.hdr(host),map_str(backends.map) -m found
http-request deny if !is_valid_host

-M load the file pointed by -f like a map file:
pattern is 1st column instead of using the full line as pattern.
acl is_valid_host req.hdr(host) -m str -M -f backends.map
http-request deny if !is_valid_host

Map files conclusions

● Easy to maintain.
● Very low lookup time if data is normalized.
● Can be used with any fetch sample like src, req.hdr (hostname or client

ID), req.cook, …
● Can be live updated from the runtime API (set map <map>

[<key>|#<ref>] <value>), rules (http-request set-map) or with
lb-update module (enterprise edition).

● Can be used to define variables such as thresholds:

tcp-request connection set-var(txn.max_conn_allowed)
str(max_conn_allowed),map(settings.map,10)

Stick tables

What are stick-tables?

● In-memory efficient key-values tables to store various information.
● Only existing keys consume memory.
● Initial goal: handle server affinity when cookies are not usable (TCP mode).
● Now: can store lots of statistics (connection and request rates, bytes in or out,

custom values such as gpc or gpt).
● Can be replicated to another HAProxy server.
● Can be aggregated using the Global Profiling Engine (AKA

stick-table-aggregator) in Enterprise Edition.

Stick table definition

Dummy backend used to track statistics per client IP. The table is
configured to compute the connection rate within 1m time frame and
compute errors within 10m.
backend per-ip
 stick-table type ip size 10k expire 24h store conn_rate(1m)
store http_req_rate(1m) store http_err_rate(10m) store
http_fail_rate(10m)

Dummy backend used to track if a file has been downloaded in the
last hour. Instead of storing the file path, we use the base32 CRC
of the path which is more efficient.
backend per-url
 stick-table type binary len 8 size 10k expire 24h store
http_req_rate(1h)

Stick table definition

● Only one table per backend.
● Table named after its backend.
● Need to define dummy backends to create more stick-table.
● Are referred by their names in configuration:

table_http_req_rate(per-ip).
● Can be queried from runtime API:

List all tables
socat unix:haproxy.sock - <<< "show table"

Show a table content
socat unix:haproxy.sock - <<< "show table per-ip"

Stick table definition

All tables are shown in the statistic page.

Stick table in peers section
peers my-app
 # requires at least 1 server
 server "$HAPROXY_LOCALPEER" # this host name

 # table NAME DEFINITION
 # instead of
 # stick-table DEFINITION
 table per-ip type ip size 10k expire 24h store conn_rate(1m)
store http_req_rate(1m) store http_err_rate(10m) store
http_fail_rate(10m)

 table per-url type binary len 8 size 10k expire 24h store
http_req_rate(1h)

Stick table in peers section

● Can be replicated to remote peer or aggregator (Enterprise only).
● Latest update wins!
● Server name must match hostname or peer name (-L option).
● No need for extra dummy backends (do not pollute statistics page).
● Are referenced by PEERS_NAME/TABLE_NAME scheme:

table_http_req_rate(my-app/per-ip).

List all tables
socat unix:haproxy.sock - <<< "show table"

Show a table content
socat unix:haproxy.sock - <<< "show table my-app/per-ip"

Dos and don’ts

Track per client IP statistics.
http-request track-sc0 src table per-ip

Source IP address is only made at connection time.
Not for all requests.
tcp-request connect track-sc0 src table per-ip
Capture ssl version for TCP passthrough proxy
tcp-request inspect delay 1s
tcp-request session track-sc1 req.ssl_ver

● Track layer 4 data (src, ports) at tcp-request connect
● Track TCP data from payload at tcp-request content

Conclusions

● Use peers section if multiple tables are required.
● Track values as soon as possible to prevent multiple lookups per connection.
● Tables are useful for rate limiting and abuse detection.
● Table content is lost on reload except when using a peers section.

Miscellaneous optimizations

ACL definition
acl allowed_host src 10.0.0.10 10.0.0.20 10.0.0.30
acl allowed_host src -m ip -f office-fr.acl
acl allowed_host src -m ip -f office-hr.acl
acl allowed_host src -m ip -f office-us.acl
acl allowed_host src -m ip -f office-ca.acl

● Items are OR’d
● Inefficient: creates 1 lookup tree per line. Lookup forest!
● 132k req/s vs 134k req/s. Gap increases with statements.

Better solution
acl allowed_host src -f office-fr.acl -f office-hr.acl -f
office-us.acl -f office-ca.acl 10.0.0.10 10.0.0.20 10.0.0.30

ACL

● Multiple definitions can be used if criterions are different:

acl has_client_id url_param(client-id) -m found
acl has_client_id req.hdr(x-client-id) -m found

● Order matters.
● On-demand evaluation.
● Evaluation is stopped as soon as possible:

has_client_id is not evaluated if allowed_host is true
http-request deny if !allowed_host !has_client_id

x-forwarded-for

(1) Adds xff. Potential security issue
http-request add-header x-forwarded-for %[src]
(2) Removes and adds xff
http-request del-header x-forwarded-for
http-request add-header x-forwarded-for %[src]
(3) Replaces xff
http-request set-header x-forwarded-for %[src]

(4) Adds xff. Potential security issue
option forwardfor
(5) Replaces xff
option forwardfor
http-request del-header x-forwarded-for

X-forwarded-for (results)

● Use option forwardfor.
● Additional del-header rule can be used if security is a concern.
● Use tcpdump to validate results sent to the server.

1 add-header 135k req/s

2 del-header + add-header 132k req/s

3 set-header 133k req/s

4 option forwardfor 152k req/s

5 option forwardfor + del-header 150k req/s

x-forwarded-proto

http-request set-header X-Forwarded-Proto https if { ssl_fc }
http-request set-header X-Forwarded-Proto http if !{ ssl_fc }

use iif converter which is cheaper than 2 http-request rules
http-request set-header X-Forwarded-Proto %[ssl_fc,iif(https,http)]

● With 2 rules: 144k req/s
● Using iif: 146k req/s

HTTP and HTTPS

frontend http
 bind *:80
 # full ruleset
 use_backend my-backend

frontend https
 bind *:443 ssl crt /etc/haproxy/certs
 # full ruleset
 use_backend my-backend

HTTP and HTTPS (2)

frontend web
 bind *:80
 bind *:443 ssl crt /etc/haproxy/certs
 # full ruleset
 use_backend my-backend
 # Let the client remember to use https
 http-after-response set-header Strict-Transport-Security
"max-age=31536000; includeSubDomains; preload;" if { ssl_fc }

● Frontends can use several binds
● Even with different methods (IPv4, IPv6, abns, unix socket, …)
● Easier to maintain

HTTP and HTTPS (3)
(1) http -> https
redirect scheme https code 301 if !{ ssl_fc }

● 1: redirect scheme is done after http-request rules. (118k req/s).
● 2: Careful if not using standard ports! (156k req/s).
● 3: Does this example really makes sense? (145k req/s).

Rule of thumb http-request redirect from http to https should be the first rule.

(2) http-request redirect is better than redirect
http-request redirect scheme https code 301 if !{ ssl_fc }
(3) If not using standard ports. Does it really make sense?
http-request redirect code 301 location
https://%[req.hdr(host),word(1,:)]:8443%[pathq] if !{ ssl_fc }

last_rule_file and last_rule_line

● Useful to determine latest http-request or tcp-request rule in request
processing.

● Add these values to a log line:

Add last rule information to standard log line.
HTTP_LOG should be declared in the global section using a
setenv directive.
log-format "${HTTP_LOG} lr:%[last_rule_file]:%[last_rule_line]"

Nov 2 17:08:27 lab-inj02 haproxy[24499]: 198.18.0.101:47082
[02/Nov/2022:17:08:27.161] xforwardedfor-option-del demo-server/<NOSRV>
0/-1/-1/-1/0 200 74 - - LR-- 1/1/0/0/0 0/0 "GET / HTTP/1.1" lr:haproxy.cfg:97

Conditional configuration

peers my-app
 # The local peer has to be defined with no option
 server "$HAPROXY_LOCALPEER"

 # Add some replicas if required. A peer name MUST match the server
 # hostname or the name given with the -L option to HAProxy.
 .if defined(IS_CLUSTER)
 bind *:10000
 # If current peer is lb1, we need to add lb2
 .if streq("$HAPROXY_LOCALPEER","lb1")
 server lb2 192.168.255.2:10000
 .endif
 # Same in the other way round.
 .if streq("$HAPROXY_LOCALPEER","lb2")
 server lb1 192.168.255.1:10000
 .endif
 .endif
 # Tables definition goes here

String escaping

● Use weak (") or strong quoting (') instead of backslash (\) space escaping.
● Easier to read and modify.
● Weak quotes: allow variable expansion.
● Strong quotes: nothing is interpreted. Use it with regular expressions.

http-request set-header x-comment this\ is difficult\ to\ read
http-request set-header x-comment "this is easier to read"
Protect regexp strings and arguments (Check official documentation)
http-request set-path '%[path,regsub("^/(here)(/|$)","my/\1",g)]'

Who spotted the bug in first rule?
Missing \ between is and difficult.

Thank for your attention.

Any questions?

